Plug-on display

$+497135102-211$
info@atrisocom

DA 06 EX
EXII 2 G Exia IIC T4 Gb

READ THOROUGHLY BEFORE USING THE DEVICE KEEP FOR FUTURE REFERENCE
ID: 900.100.0820 | Version: 11.2019.0

1. General and Safety-Related Information on this Operating Manual
This operating manual enables safe and proper handling of the product, and forms part of the device. It should be kept in close proximity to the place of use, accessible for staff members at any time.
All persons entrusted with the mounting, installation, putting into
service, operation, maintenance, removal from service and service, operation, maintenance, removal from service, and
disposal of the device must have read and understood the disposal of the device must have read and understood the
operating manual and in particular the safety-related information

The following documents are an important part of the

Data sheet
EC-type-examination certificate
For specific data on the individual sensors, please refer to the respective data sheet.
Download these by accessing www.afriso.com or request
them by e-mail or phone: info@afriso.com | Fon: +497135 them by
102-211
The explosion-proof versions of our products are variants of the standard products.
Example:
Standard: DA $06 \rightarrow$ IS version: DA 06 EX
In addition, the applicable accident prevention regulations, safety requirements, and country-specificic installation standar as well as the accepted engineering standards must be ob-
served.

For the installation, maintenance and cleaning of the device, the relevant regulations and provisions on explosion protection
(VDE0160, VDE 0165 and/or EN 600079-14) as well as the (VDE0160, VDE 0165 and/or EN 600079-14) as well as the
accident prevention regulations must absolutely be observed The device was designed by applying the following standards:
EN 60079-0:2012+A11:2013, EN 60079-11:2012
1.1 Symbols Used

Warning word	- Type and source of danger Measures to avoid the danger
Warning word	Meaning
DANGER	Imminent danger! Non-compliance will result in death or serious injury.
	- Possible danger! - Non-compliance may result in death or serious injury.
CAUTION	Hazardous situation! Non-compliance may result in minor or moderate injury.

NOTE - draws attention to a possibly hazardous situation that may result in property damage in case of non-compliance.

Precondition of an action

1.2 Staff Qualification

Qualified persons are persons that are familiar with the mounting, installation, putting into service, operation, maintenance, removal from service, and disposal of the product and have the appropriate qualification for their activity
This includes persons that meet at least one of the following three requirements

They know the safety concepts of metrology and automation technology and are familiar therewith as project staff.
They are operating staff of the measuring and automation systems and have been instructed in the handling of the systems. They are familiar with the peration of the devices and technologies described in this documentation
They are commissioning specialists or are employed in the service department, and have completed train ing that qualifies them for the repair of the system. In
ground, and to mark circuits and devices according to the safety engineering standards.
All work with this product must be carried out by qualified persons!

. 3 Intended Us

The DA 06 EX plug-on display is used for measured value display and optionally for limit point monitoring (with PNP open collector output) for a large variety of transmitters (pressure,
 A device has an explosion-protection approval if this was
specified in the purchase order and confirmed in our orde specified in the purchase order and contirmed in our order
acknowledgement. In addition, the type plate includes a *isivis sign The user must check whether the device is suited for the selected use. In case of doubt, please contact our sales department (info@afriso.com | Fon: +49 7135 102-211). AFRISO assume no liability for any wrong selection and the consequences thereof!
The specifications listed in the current data sheet are binding and must absolutely be complied with. If you do not have the data sheet to hand, please request it
our homepage. (http://www.afriso.com)
1.4 Foreseeable Misuse

The digital plug-on display DA 06 EX must not be used particuarly in the following cases:
has no approval. When the DA 06 EX is used in combination with other devices, the ap
1.5 Limitation of Liability and Warranty

Failure to observe the instructions or technical regulations, damage to the device will result in the forfeiture of warranty and damage to the
liability claims.
1.6 Safe Handling

NOTE - Treat the device with care both in the packed and d condition
NOTE - The device must not be altered or modified in
any way.
NOTE - Do not throw or drop the device
NOTE - Excessive dust accumulation (over 5 mm) and com plete coverage with dust must be prevented.
The device is state-of-the-art and is operationally reliable. perated improperly.
1.7 Safety-Related Maximum Values
$\mathrm{u}_{\mathrm{i}}=28 \mathrm{~V}, \mathrm{l}_{\mathrm{i}}=93 \mathrm{~mA}, \mathrm{P}_{\mathrm{i}}=660 \mathrm{~mW} ; \mathrm{C}_{\mathrm{i}} ; \mathrm{L}_{\mathrm{i}}=$ negligible plus line inductance of $1 \mu \mathrm{H} / \mathrm{m}$ and line capacities of $100 \mathrm{pF} / \mathrm{m}$ -25 ... $70^{\circ} \mathrm{C}$

1.8 Product Description

The digital plug-on display DA 06 EX may be used with all transmitters if the following requirements are met:

- Output signal of the transducer: 4-20 mA / 2-wire

Refer to "Electrical Connections" for the plug connection
system
The digital plug-on display DA 06 EX can be mounted between
the connector and transducer and is ready for immediate operation. No additional auxiliary energy is required since the display is supplied from the $4-20-\mathrm{mA}$ circuit. A preferred application is on-site process monitoring, for example.
Programming is performed via two buttons on the front side. The following parameters can be set: scaling, decimal point, damp ing, switch point, and delay. Moreover, a min./max. value memory is available. The settings will be retained even in case
of a power failure. Incidences of range exceedance in both of a power failure. Incidences of range
directions can be displayed as messages.
The integrated diagnostic system constantly monitors all func tions of the display. The housing can be turned by 300° in an infinitely variable manner, the display by 330°.

Fig. 1: view
1.9 Scope of Delivery

Check that all parts listed in the scope of delivery are include free of damage, and have been delivered according to your

```
Plug-on Display DA 06 EX
fastening screw M3×84
profiled gasket
```

Units decal sheet
Operating manua

2. Product Identification

The device can be identified by means of the type plate with
order code. The most important data can be gathered therefrom

EC-type examination 6 Order code
2 Safety-Related 7 Serial number
Maximum Values
Output 8 Terminal assignment
4 Input 9 IS marking
5 Type designation
Fig. 2: Type plate
NOTE - The type plate must not be removed!
The marking of the equipment shall include the following:
EC-type examination certificate IBExU12ATEX1084 X
Marking: EXII 2 G Ex ia IIC $\mathbf{T 4} \mathbf{G b}$
3. Mounting
3.1 Mounting and Safety Instructions

NOTE - The technical data listed in the EC type-examination certificate are binding. Download these by accessing
info@afriso.com | Fon: +49 7135 102-211
NOTE - Make sure that the entire interconnection of intrins ly safe components remains intrinsically safe. The owner-
operator is responsible for the intrinsic safety of the overall system (entire circuitry)
NOTE - If there is increased risk of damage to the device by
lightning strike or overvoltage, increased lightning protection
NOTE - Do not remove the packaging of the device until shortly before the mounting procedure in order to exclude any
damage!
NOTE - The display and the plastic housing are equipped NOTE - The display and the plastic housing are equipped
a turning limiter. Avoid overturning the display or housing by a turning limiter. Avoid over
exerting increased force.
3.2 Mounting Steps for ISO-4400 Connectors

1. Loosen and carefully pull off the cable box from the
transducer
Plug the plug-on display onto the transducer. When doing so, ensure that the profiled gasket premounted the bottom side is seated correctly
2. Remove the fastening screw from the cable box, Replace the profiled gasket premounted on the cable box
by the supplied profiled gasket to ensure the IP 65 proby the supplie
tection rating.
3. Plug the cable box onto the plug-on display
. Insert the supplied stainless steel screw through the cable box and plug-on display and tighten the screw
hand-tight on the transducer using a screwdriver.

3.3 Alignment of the Display Module

The display may be turned to the desired position in order to The displafect reading even in case of unusual mounting positions.

Fig. 3: Display module
4. Electrical Connection
4.1 Connection and Safety Instructions

Improper installation may result in electric shock
Always mount the device in a de-
energized condition!

Explosion hazard if the operating volt-
age is too high (max. 28VDC)! Operate the device only within th
specification! (data sheet) The limit values listed in the EC type-examination certifi-
cate are observed. (Capacity and inductance of the connection cable are not included in the values.)
The supply corresponds to protection class II. (protective insulation)
NOTE - If the device is equipped with a cable box, it must be ensured that the outer diameter of the line used is within the this is seated firmly and gaplessly in the cable fitting! NOTE - Use a shielded and twisted multicore cable for the electrical connection.
NOTE - Ensure that potential equalization exists in the entire routing of the line, both inside and outside the explosion-
NOTE - It mu
NOTE - It must be ensured by the external wiring that no signal separation devices must be used that satisfy this requiresignal separation
ment.
4.2 Conditions for the Explosion-Hazardous Area Danger generated by electrostatic charging

\triangle
 DANGER

Explosion hazard due to spark formation from electrostatic charging of ifastic components. outlet, the connection with a cable must be fixed.
Do not clean the device and, if appli-
cable, the connection cable, in a dry state! Use a moist cloth, for example.

Overvoltage protection

If the pressure transducer is used as a Category 1 G piece of upstream (refer to the German Ordinance on Industrial Health [BetrSichV] and EN60079-14).

Shematic circuit design
The operation of an intrinsically safe device in the explosionhazardous area requires special care when selecting the required Zener barrier or transmitter repeater devices so that the
device properties can be utilized to the full extent. The following diagram shows a typical arrangement consisting of power pack, Zener barrier and plug-on display.

NOTE - Observe item (17) of the type-examination certificate which specifies special conditions for intrinsically safe operation Exemplary circuit description
The supply voltage of e.g. $24 \mathrm{~V}_{\mathrm{Dc}}$ provided by the power pack is led through the Zener barrier. The Zener barrier contains series esistors and Zener diodes as protective components. Then the operating voliage is appligal to the device and, depending on the

Selection criteria for Zener barriers and power supplies The minimum supply voltage U_{B} min of the device must not be undercut.
When using a galvanically isolated power supply with linear
limitation, it must be taken into account that the terminal voltage of the device will decrease because of the linear limitation, as
with a Zener barrier. Furthermore, account must be taken of the fact that a certain voltage drop will also occur on an optionally used signal isolation amplifier, whereby the operating voltage of he device will decrease additionally.

Test criteria for the selection of the Zener barrier
In order not to undercut $\mathrm{U}_{\mathrm{B} \text { min }}$ it is important to check which minimum supply voltage is available at full-level modulation of he device.
Usually the specifications of the Zener barrier will provide an also be determined by calculation. If a minimum supply voltage of e.g. 16 V is assumed, a certain voltage drop on the series esistor of the Zener barrier follows in accordance with Ohm's aw. If the switch output is additionally activated on a device with
PNP switch output, the additional current flowing from the switch output to the load resistor will also flow through the Zener barrie or from the output of a power supply. The higher the load current, the lower the available minimum operating voltage. In he circuit shown, the maximum current can be calculated from the maximum voltage difference ($U_{\text {ab barier max }}$ between input and
output of the Zener barrier divided by the series resistance of the Zener barrier. The maximum signal current must be subtracted rom this value. If the available residual current is less than the current needed at the switch output, either another barrier or higher supply voltage upstream of the barrier should be

NOTE - When selecting the ballasts, the maximum operating conditions according to the type-examination certificate must be observed. When assessing the ballasts, refer to their current data sheets to ensure that the entire interconnection
cally safe components will remain intrinsically safe.
Calculation example for the selection of the Zener arrier
The nominal voltage of the power pack (supply) upstream of the Zener barrier is $24 \mathrm{~V}_{\mathrm{DC}} \pm \square 2 \%$. From this follows:

- maximum supply voltage:
$U_{\text {sup } \max }=24 \mathrm{~V} * 1.02=24.48 \mathrm{~V}$
minimum supply voltage:
$U_{\text {Sup min }}=24 \mathrm{~V} * 0.98=23.52 \mathrm{~V}$
First, the minimum supply voltage of the combination of plug-on
display and transducer must be determined. This results from display and transducer must be determined. This results from drop of the plug-on display which is nominally 6 V . For example, $\mathrm{U}_{\mathrm{B} \text { transtucer min }}=10 \mathrm{~V}$ results in a minimum supply voltage
$\mathrm{U}_{\mathrm{B} \text { min }}=16 \mathrm{~V}$.

The series resistor of the Zener barrier is specified with 295Ω. The maximum voltge drop at the Zener barier may reach the The maximum vor
$\mathrm{U}_{\text {ab barier max }}=23.52 \mathrm{~V}-16 \mathrm{~V}=7.52 \mathrm{~V}$
In order for this condition to be adhered to, the maximum curren must not exceed the following value:
$\mathrm{I}_{\text {max }}=7.52 \mathrm{~V}: 295 \Omega=25.49 \mathrm{~mA}$
The maximum current of the combination of plug-on display and ransducer is made up of the sum of signal current and switching current. There are two approaches:

1. The measuring range is to be utilized in the range of $0 \ldots 100 \%$. A maximum signal current of 20 mA is gener
ated thereby. Based on the facts above, the available residual current through the switch output is calculated as follows:
IResid 1 $=25.49 \mathrm{~mA}-20 \mathrm{~mA}=5.49 \mathrm{~mA}$
2. With an analog output of $4 \ldots 20 \mathrm{~mA}$, the measuring range is to be utilized only in a specific range,
results in a maximum signal current:
$\mathrm{I}_{\text {Signal max }}=\Delta_{\mathrm{i}} * 0.7+\mathrm{i}_{\text {ortstet }}=16 \mathrm{~mA} * 0.7+4 \mathrm{~mA}=15.2 \mathrm{~mA}$
(with $\Delta i=20 \mathrm{~mA}-4 \mathrm{~mA}$ and $\mathrm{i}_{\text {oftset }}=4 \mathrm{~mA}$)
Here, the available residual current through the switch output is $I_{\text {Resid } 2}=25.49 \mathrm{~mA}-15.2 \mathrm{~mA}=10.29 \mathrm{~mA}$
Condition: $\quad I_{\text {Resid }} \geq I_{\text {swich ouput }}$
The switching current (current through the switch output) must
hot exceed the determined residual current since this will limpair the functionality of the device.
NOTE - The switching current must be determined separately by the user as it depends on the particular case of application. The switching current can be calculated or measured at the switch output.
NOTE - Please note that no line resistances have been listed in this calculation. These lead additionally to a voltage drop that must be taken into account.

4.3 Electrical Installation

Connect the device electrically according to the information specified on the type plate, the following table, and the connec tion circuit diagram.
Terminal assignment table:

	Electrical connections	
	ISO 4400	
Supply +	1	-1 $\left.\frac{1}{\square} 03\right]$
Supply Switch output 1	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$	(10 ${ }^{1}$
Shield	ground pin	

Voltage supply

The voltage drop generated by the device electronics is approx. $6 \mathrm{~V}_{\text {D }}$. Consider this when designing your system supply. The
limit values of the voltage supply are calculated as follows: limit values of the vollage supply are calculated as follows $\begin{array}{ll}\text { minimum operating voltage: } & V_{S_{\text {min }}}=V_{\text {tanssititer min }}+6 \mathrm{~V} \\ \text { maximum operating voltage: } & \mathrm{V}_{\mathrm{S}_{\text {max }}}=\mathrm{V}_{\text {transmiter max }}+6 \mathrm{~V}\end{array}$ $\mathrm{V}_{\text {tansmiter min }}=$ minimum operating voltage of the 2 -wire transmitter used
$\mathrm{V}_{\text {tansmiter max }}=\underset{\text { mitter used }}{\operatorname{maximum}}$ operating voltage of the 2 -wire trans-

5. Commissioning

$\checkmark \quad$ The device has been installed properly
$\checkmark \quad$ The device does not have any visible defect
The device is operated within the specification. (see data sheet and EC type-examination certificate)
6. Operation

Control and display elements

Fig. 4: Control panel
Depending on how it is equipped, the device has max. one LED which is allocated to the switch output. If this LED is lit, the active. The display of the measured value and the configuration of the individual parameters is performed through the menu, via he seven-segment display.

Configuration

The menu system is a closed system allowing you to scroll both torth and back through the individual set-up menus to navigate an EEPROM and are therefl settings are permanently stored in disconnection from the supply voltage. The structure of the menu system is the same for all device variants, regardless of absence of the superfluous menu items. The ofllyowing illustrations and menu description show all possible menu items.
NOTE - Please adhere to the description exactly and remember that changes to the adjustable parameters (switch-on point, switch-off point, etc.) only become effective after pushing both, buttons simultaneously and leaving the menu item.

Password system

The device can be locked in order to prevent configuration by unauthorized persons. Refer to menu 1 of the menu list for more information.
Unit
The unit of the measured value is already determined at the time
The unit of the measured value is already determined at the
of ordering by the desired measuring range. However, the of ordering by the desired measuring range. However, the
device may also be labeled with another unit at a a late time by attaching one of the supplied unit decals.
Explanation of hysteresis mode and compare mode
In order to invert the respective mode, the values for switch-

Fig. 6: Compare mode

Fig. 7: Hysteresis mode

Menu system structure

4-button: to scroll forward through the menu system or to increase the indicated value; additionally, the control (operator) mode (starting with menu 1) can be accessed by pressing the button
--button: to scroll back through the menu system or to decrease the indicated value; additionally, the control (operator)
mode (starting with the last menu) can be accessed by pressing the button
Pressing both buttons simultaneously: to acknowledge the nems and the values set
NOTE - To increase the counting speed when setting the values: press and hold the re
Select the desired menu item using the button $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$. taneously
Set the desired value or select a default value by pressing the
button $\boldsymbol{\Delta}$ or \mathbf{V}
menu item by press menu lem by pressing both buttons simultaneously
Menu 1 - Access protection
PAon \rightarrow Password active \rightarrow To deactivate:
settajjust the password
PAof \rightarrow Password inactive \rightarrow To activate: set/adjust
he password
the password
NOTE - The password is factory-set to "0005";
Adjusting the password - Special menu 4

$d P$	Menu 2 - Setting of decimal point position

LP	Menus 3 and 4 - Setting of zero point $/$ end point The correct values were already set during manufactur

EP	$\begin{array}{l}\text { The correct values were already set during manufactur- } \\ \text { ing; a subsequent contiguration for 2-wire devices is } \\ \text { only required when deviating display values (e.g. }\end{array}$

only required when deviating display values (e.g. 0
100%) are desired
FI LE \quad Menu 5 - Setting of damping (filter)
To achieve a stable indication when measured values
fluctuate considerably: setting the time constant uf a

luctuate considerably: setting the time constant of a | $\begin{array}{l}\text { simulate } \\ 30 \mathrm{~s})\end{array}$ |
| :--- |

HI LD	Menu 6 - Activation of range-exceeding message Set to "on" or "off"

5 lon	Menu 7 - Setting of switch-on point Set the value for the activation of the switch

Set the
(S1on)
5 LoF \quad Menu 8 - Setting of switch-off point
Set the value for the deactivation of the (S10F)
HY $1 \quad \begin{aligned} & \text { Menu } 9 \text { - Selection of hysteresis mode or compare } \\ & \text { mode }\end{aligned}$
[P \quad I Sode 1) for switch output 1

NOTE - see " 7.4 Explanation of hysteresis mode and
compare mode"

J lon	Menu 10 - Setting of switch-on delay

Set the value of the switch-on delay after reaching the (adjustable from 0 to 100 s)
d lof Menu 11 - Setting of switch-off delay
Set the value of the switch-off delay after reaching the
switch-off point 1 (dw) (adjustable from 0 to 100
Hi Pr $\quad \begin{aligned} & \text { Menus } 12 \text { and } 13 \text { - Maximum / Minimum value } \\ & \text { display }\end{aligned}$
Display of the maximum pressure (HIPr) or minimum
pressure (LOPr) applied during the measurement the value will be lost if the voltage supply is (the value will
interrupted)
NOTE - To delete: press both buttons again within
one second one second
dLd5
Menu 14 - Measured-value update (display) Set the duration of cycles after which the measured
value is updated in the display (adjustable from 0.0 to value
$10 \mathrm{~s})$
Special menus
(To access the special menus, use the button $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ to select the menu item "PAof". Acknowledge this, and "1" will appear in the display)
F5 5 Special menu 1-Full scale compensation For full scale compensation (correction of the display) if
the indicated value for full scale differs from the applied pressure value: a compensation is only possible if respective reference sources are available, provided that the measured value deviation is within defined limits; set "0238", acknowledge with both buttons, and
"FS S" will appear in the display. Now the device must be pressurized using a pressure reference (the pressure must correspond to the measuring range point). Push both buttons in order to store the signal being output by the pressure switch as full scale (range span) signal; the set end point will appear in the
display, although the full scale sensor signal is offse. NOTE - The analog output signal (in case of devices with analog output) remains unaffected by this change.

| oF 5 | Special menu 2 - Offset alignment / position |
| :--- | :--- | correction

offset \neq ambient press (pressure reference must correspond to the lower measuring range value). Push both buttons to store the signal currently being output as offset; the set lower display, although the sensor signal is shifted in the offset
NOTE - A position correction is required if the installation position differs from the factory calibration
(otherwise this can cause minor signal shifts resulting (otherwise this can cause m
in wrong indicated values)
NOTE - The analog output signal (in case of devices with analog output) remains unaffected by this change. Moreover, a sly if the range value (full scale) occurs
simultaneously with the shift of the offset.
simulaneously win the shift of the oflset.

LoAd $\quad \begin{aligned} & \text { Special } \\ & \text { settings }\end{aligned}$

$$
\left.\right|^{\text {settings }} \mathbf{~ S e 7 2 9}
$$

Set " 0729 ". To load the factory default settings, pus both buttons again simultaneously
NOTE - All changes made will be reset (password
will be reset to " 0005 ")

SEEP \quad Special menu 4 - Setting of password Set "0835" and acknowledge with both buttons. "SEEtP"
will appear in the display. Press the button set / change the password (adjustment range 0 9999; the code numbers 0238, 0247, 0729, 0835 are excluded). Acknowledge the password by pressing
both buttons simultaneously

7. Maintenance

Airborn
shock Always service the device in a depres
surized and de-energized condition!

due to aggressive fluids

Wear suitable protective clothing, e.g gloves, safety goggles.

In principle, the device requires no maintenance.
If necessary, clean the housing of the device using a moist cloth and a non-aggressive cleaning solution.
8. Removal from Service

DANGER	- Airborne parts, leaking fluids, electric shock - Always dismount the device in a de- pressurized and de-energized condi- tion!
- due to aggressive fluids.	
- Wear suitable protective clothing, e.g.	
gloves, safety goggles.	

9. Service/Repair

Information on service / repair:
www.afriso.com
info@arriso.com
Service phone: +49 7135 102-211
9.1 Return

due to pollutants
Wear suitable protective clothing, e.g. gloves, safety goggles
oren rear
For every return shipment, whether for recalibration, decalcificafion, alteration or repair, the device must be cleaned thoroughly and packed in a break-proof manner. A return declaration with a detailed fault description must be added to the defective device,
If your device has come into contact with pollutants, a declaraIf your device has come into contact with pollutants, a declar
tion of decontamination is additionally required. Appropriate templates can be found on our homepage. Download these by accessing www.afriso.com or request them by e-mail or phone
info@afriso.com | Fon: +497135 102-211
In case of doubt regarding the fluid used, devices without a eclaration of decontamination will only be examined afte receipt of an appropriate declaration.
10. Disposal

due to pollutants

 Wear suitable protective clothing, e.g. gloves, safety goggles The device must be disposed of according to theEuropean Directive 2012/19/EU (waste of electrical and electronic equipment). Waste equip
NOTE - Dispose of the device properly:

11. Warranty Terms

The warranty terms are subject to the legal warranty period of 2 onths, valid from the date of delivery. If the device mproperly, modified or damaged, we will rule out any warranty
laim. A damaged diaphragm will not be accepted as a warranty case. Likewise, there shall be no entitlement to services or parts provided under warranty if the defects have arisen due to norma wear and tear.

2. EU Declaration of Conformity / CE

AFRISO-EURO-INDEX GmbH hereby declares its sole responsibility that the products mentioned above comply with the Directives and standards listed.
2014/30/EU (EMC
24/34/EU (ATEX)
BExU12ATEX1084
IBEXU12ATEX1084X
EN 60079-0:2012+A11:2013, EN 60079-11:2012

BExU Institut für Sicherheit GmbH / 0637
EX2 160115639015
EN 80079-34:2012
Notified body / ID numbe
TÜV SÜD Produkt Service GmbH / 0123

